Identification of Tea Storage Times by Linear Discrimination Analysis and Back-Propagation Neural Network Techniques Based on the Eigenvalues of Principal Components Analysis of E-Nose Sensor Signals

نویسندگان

  • Hui-Chun Yu
  • Yongwei Wang
  • Jun Wang
چکیده

An electronic nose (E-nose) was employed to detect the aroma of green tea after different storage times. Longjing green tea dry leaves, beverages and residues were detected with an E-nose, respectively. In order to decrease the data dimensionality and optimize the feature vector, the E-nose sensor response data were analyzed by principal components analysis (PCA) and the five main principal components values were extracted as the input for the discrimination analysis. The storage time (0, 60, 120, 180 and 240 days) was better discriminated by linear discrimination analysis (LDA) and was predicted by the back-propagation neural network (BPNN) method. The results showed that the discrimination and testing results based on the tea leaves were better than those based on tea beverages and tea residues. The mean errors of the tea leaf data were 9, 2.73, 3.93, 6.33 and 6.8 days, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normalization techniques for gas sensor array as applied to classification for black tea

Assessment of black tea quality is a difficult task due to the presence of a large number of chemical compounds. The present day practice in the tea industry for this purpose is to employ the tea-tasters, who evaluate the quality based on their experience and professional acumen. There is a dire need in the industry to assess the tea quality objectively using instrumental methods. In this pursu...

متن کامل

Discrimination of Power Quality Distorted Signals Based on Time-frequency Analysis and Probabilistic Neural Network

Recognition and classification of Power Quality Distorted Signals (PQDSs) in power systems is an essential duty. One of the noteworthy issues in Power Quality Analysis (PQA) is identification of distorted signals using an efficient scheme. This paper recommends a Time–Frequency Analysis (TFA), for extracting features, so-called "hybrid approach", using incorporation of Multi Resolution Analysis...

متن کامل

Discrimination of Golab apple storage time using acoustic impulse response and LDA and QDA discriminant analysis techniques

ABSTRACT- Firmness is one of the most important quality indicators for apple fruits, which is highly correlated with the storage time. The acoustic impulse response technique is one of the most commonly used nondestructive detection methods for evaluating apple firmness. This paper presents a non-destructive method for classification of Iranian apple (Malus domestica Borkh. cv. Golab) according...

متن کامل

Signal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).

In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...

متن کامل

Patterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis

    Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009